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Ensemble Kalman filter (EnKF)

Ensemble Quadrature Filter (EnQF)

Ensemble Conjugate Transform Filter (ECTF)

Data processing

EXP 1: Unimodal posterior with a broad uncertainty range

EXP 2: Multimodal posterior with a narrow uncertainty range

Likelihood tempering

• Visible degradation in EnKF: single vs. double mode, large number of 

members outside the Bayesian posterior.
• EnQF has a better handle on the primary mode, but larger error in variance.

• While ECTF-ST solution is not ideal, analysis members cover both modes.

• Observe {OLR, OSR} at 𝑡=120min with 𝐑=5 Wm-2.
• Inverse problem: Estimate {𝑎𝑔, 𝑏𝑔}, parameters in the graupel 𝑣𝑓𝑎𝑙𝑙/𝐷 

relationship. Note that 𝑏𝑔 ∈ (0,1] and 𝑎𝑔 > 0 (bounded parameters). 

• Posterior ensemble {𝛉post
𝑖 }𝑖=1

𝑁𝑒  from each filter is evaluated against the true 

Bayesian solution (obtained numerically).  

• A rejection sampling procedure is used to post-process the raw filtering output 

and remove unrealistic members that violate physical and statistical bounds.

• A more gradual incorporation of the observations 𝐲 can further improve ECTF.

• Idea: Similar to the Ensemble Kalman Inversion (EKI), perform an iterative 
update by tempering the likelihood such that

𝑝 𝐲 𝐱 = ෑ

𝑘

𝑝 𝐲 𝐱 𝛼𝑘 with ෍

𝑘

𝛼𝑘 = 1.

• In our case with a Gaussian 𝑝 𝐲 𝐱 , we perform 𝑘 updates with 𝐑𝑘 ← 𝐑/𝛼𝑘.

• EnKF (EKI) changes only 

slightly relative to k=1.
• ECTF-ST analysis visibly 

improved in terms of 

primary mode and 

narrower ensemble → 

conjugate approximation 
satisfied better when k=2.

k=2 case

• ECTF shows promises for the efficient estimation of 

cloud parameters.
• Next, the algorithm will be tested with learnable 

transformations; e.g., the rational splines shown to the 

right, which can approximate complex distributions.

• Will also consider more methods, experimental 

settings and objective skill metrics.

• Observe {OLR, OSR} (outgoing LW and SW radiation) at 𝑡=120min with 𝐑 =
10,20  Wm-2.

• Inverse problem: Estimate the density of snow and graupel {𝜌𝑠, 𝜌𝑔}. Note that 

both parameters are bounded in the interval (0, 0.917].

• Reasonable performance by EnKF.

• Despite its nonlinear update, EnQF makes the results worse: large fraction of 
the original posterior members violate the parameter bounds.

• By contrast, ECTF-ST is very accurate and slightly better than EnKF.

• 𝐟𝛟prior
 can be estimated via MLE from {𝛉prior

𝑖 }𝑖=1
𝑁𝑒 , but initial tests use 

fixed choices (ECTF-ST) which reflect different parameter bounds: (i) 

𝑓(𝑥) = exp(𝑥) if 𝜃>0 and (ii) the standard logistic function 𝑓(𝑥) =
1

1+exp(−𝑥)
 if 𝜃 ∈ (0,1).

• The key advantage is that {𝛍post, 𝚺post} can be obtained with a 

standard EnKF solver (since we need to approximate a Gaussian).

• Observations are modeled as 𝐲 = 𝐡 𝛉 + 𝛆. Here 𝛉 are the set of true 

model parameters and  𝛆~N(𝟎, 𝐑) are the measurement errors.
• The parameter estimation task can be formulated as a Bayesian 

problem:

𝑝 𝛉 𝐲 ∝ 𝑝 𝛉 𝑝 𝐲 𝛉 .

• Many extreme weather events are connected to the physics taking 

place inside clouds (e.g., latent heat strengthens hurricanes). 

• Current practice is to 

parameterize the physics 
by modeling bulk 

properties such as cloud 

fraction, total mass, 

average droplet size, etc. 
Figure by Rebecca Gianotti

• Inverse problem: Estimate the optimal model parameters from 

observations. The challenge is that existing methods are either not 
accurate enough or too expensive. 

• In this study, we will use several different ensemble approaches to 

solve Bayes’ theorem: given the sample {𝛉prior
𝑖 }𝑖=1

𝑁𝑒  from 𝑝 𝛉 , 

obtain {𝛉post
𝑖 }𝑖=1

𝑁𝑒  from 𝑝 𝛉 𝐲 .  

• Very popular method for both parameter and state estimation.

• Can handle high-dimensional problems but assumes the joint pdf 
𝑝 𝛉, 𝐲  is Gaussian. In view of this, the update is given by

𝛉post
𝑖 = 𝛉prior

𝑖 + 𝐂𝐨𝐯 {𝛉prior
𝑖 , {𝐲𝑖}) 𝐂𝐨𝐯 𝐲𝑖 , 𝐲𝑖 −1

(𝒚 − 𝒚𝑖) 

• Extends the linear update of EnKF by adding a quadratic term.

• Inclusion of higher-order moments improves the mean estimates in 
the case of skewed distributions.

• Recently, the author developed a new framework which generalizes 

the Kalman filter to arbitrarily non-Gaussian distributions (scan QR 
code to learn more). Posterior is available in exact form and given 

by 
𝑝 𝛉 𝐲 = 𝐟𝛟prior ♯𝜙(𝛍post, 𝚺post) 

• It is generally desirable to test new algorithms like ECTF in idealized 

and computationally-efficient settings first.
• The experiments in this study are based on a simplified 1D 

(column) version of a large NASA model used in real simulations 

of clouds and precipitation.

• The 1D model is driven by (i) prescribed 

profiles of temperature 𝑇(𝑧) and WV 
mixing ratio 𝑞𝑤𝑣(𝑧) as well as (ii) time-

varying profiles of vertical velocity w 𝑧, 𝑡  

and WV tendency 𝑞′𝑤𝑣(𝑧).

• 3-hour model output to the right shows 

the rain mixing ratio 𝑞𝑟 𝑧, 𝑡 , and 
represents a realistic depiction of a 

mesoscale convective system (MCS).

• Simulation and forecasting of clouds and precipitation relies on 

numerical models, but accuracy is limited due to (i) incomplete 
knowledge and (ii) computational costs.
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