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1. INTRODUCTION AND MOTIVATION 4. RESULTS
« Many extreme weather events are connected to the physics taking Data processing :
place inside clouds (e.g., latent heat strengthens hurricanes). + Posterior ensemble {8%,4.}:¢, from each filter is evaluated against the true 1

Bayesian solution (obtained numerically).
» Arejection sampling procedure is used to post-process the raw filtering output
and remove unrealistic members that violate physical and statistical bounds.

« Simulation and forecasting of clouds and precipitation relies on
numerical models, but accuracy is limited due to (i) incomplete
knowledge and (ii) computational costs.

EXP 1. Unimodal posterior with a broad uncertainty range

* Observe {OLR, OSR} (outgoing LW and SW radiation) at t=120min with R =
{10,20} Wm-=2,

* Inverse problem: Estimate the density of snow and graupel {ps, p,}. Note that
both parameters are bounded in the interval (0,0.917].

« Current practice is to
parameterize the physics %
by modeling bulk -
properties such as cloud
fraction, total mass,
average droplet size, etc.
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* Inverse problem: Estimate the optimal model parameters from
observations. The challenge is that existing methods are either not
accurate enough or too expensive.
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« Reasonable performance by EnKF.

« Despite its nonlinear update, EnQF makes the results worse: large fraction of
the original posterior members violate the parameter bounds.

« By contrast, ECTF-ST is very accurate and slightly better than EnKF.

Observations are modeled as y = h(0) + €. Here 0 are the set of true
model parameters and £€~N(0, R) are the measurement errors.

* The parameter estimation task can be formulated as a Bayesian
problem:

p(0ly) < p(0)p(y|0).

 |In this study, we will use several different ensemble approaches to
solve Bayes’ theorem: given the sample {Ggrior}liv:"l from p(0),

obtain {(9§',(,St}’l.\'=e1 from p(0]y).

EXP 2. Multimodal posterior with a narrow uncertainty range

* Observe {OLR,0SR} at t=120min with R=5 Wm-2.
* Inverse problem: Estimate {a,, b,}, parameters in the graupel v¢qy; /D

relationship. Note that b, € (0,1] and a, > 0 (bounded parameters).
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Ensemble Kalman filter (EnKF)
« Very popular method for both parameter and state estimation.

. ! « Can handle high-dimensional problems but assumes the joint pdf
: p(0,y) is Gaussian. In view of this, the update is given by

i)ost — 9%)rior + COV({Oi)rior}' {yi}) COV({yi}' {yi})_l(y — yi)

Ensemble Quadrature Filter (EnQF)

« Extends the linear update of EnKF by adding a quadratic term.
 Inclusion of higher-order moments improves the mean estimates in
the case of skewed distributions.
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* Visible degradation in EnKF: single vs. double mode, large number of
members outside the Bayesian posterior.

« EnOQF has a better handle on the primary mode, but larger error in variance.

 While ECTF-ST solution is not ideal, analysis members cover both modes.

Ensemble Conjugate Transform Filter (ECTF)

« Recently, the author developed a new framework which generalizes
the Kalman filter to arbitrarily non-Gaussian distributions (scan QR
code to learn more). Posterior is available in exact form and given

b

Likelihood tempering

« A more gradual incorporation of the observations y can further improve ECTF.
* |dea: Similar to the Ensemble Kalman Inversion (EKI), perform an iterative
update by tempering the likelihood such that

p(y|x) = ﬂp(ylx)“k with z a, = 1.
k K

 In our case with a Gaussian p(y|x), we perform k updates with R;, <« R/ay.
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* fpmor CAN be estimated via MLE from {Oi)rior}’ivgl, but initial tests use

fixed choices (ECTF-ST) which reflect different parameter bounds: (i)
f(x) = exp(x) if 8>0 and (ii) the standard logistic function f(x) =

1 i
S if 6 € (0,1).

« The key advantage Is that {p,,st, Zpost} CaN be obtained with a
standard EnKF solver (since we need to approximate a Gaussian).

k=2 case

« EnKF (EKI) changes only
slightly relative to k=1.
« ECTF-ST analysis visibly
Improved in terms of
primary mode and
narrower ensemble —
conjugate approximation
satisfied better when k=2.
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2. IDEALIZED CLOUD MODEL
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* |tis generally desirable to test new algorithms like ECTF in idealized
and computationally-efficient settings first.

* The experiments in this study are based on a simplified 1D
(column) version of a large NASA model used in real simulations
of clouds and precipitation.

 The 1D model is driven by (i) prescribed ! .
profiles of temperature T(z) and WV wl 1
mixing ratio q,,,,(z) as well as (ii) time- ol
varying profiles of vertical velocity w(z, t)
and WV tendency q',,,,(2).

« 3-hour model output to the right shows
the rain mixing ratio ¢q,-(z, t), and
represents a realistic depiction of a a\&
mesoscale convective system (MCS). 0 0 100 150

Time (min)

ECTF shows promises for the efficient estimation of
cloud parameters.

* Next, the algorithm will be tested with |learnable
transformations; e.g., the rational splines shown to the * >
right, which can approximate complex distributions.

« Will also consider more methods, experimental

settings and objective skill metrics.
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