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Motivation

® |mages direct our attention, shape athtudes, and can reinforce stereotypes.
® How can we identify and/or predict sentiment of such visual content?

How would you label sentiment of this image?
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Two known approaches from computer vision literature:

= treat images holistically: compile them in databanks with tagged sentiment labels

= pbject-centric approach: focus on specific regions within image and assign labels
object-based (eg., smile = positive sentiment; firearms = negative sentiment).

Crucial drawback of these approaches: assumption that the sentiment conveyed by an
image 15 an inherent attribute of the image itself and not of the percevers athtudes of
this image.

= Especially for politically charged imagery, viewers' interpretations are often
subjective and are a function of their beliefs.

= Subjective sentiment should largely depend on human coders' athitudes toward the
political 1ssue depicted.

Novel Approach to Visual Sentiment Task

When training a visual sentiment classifier for political images, we incorporate impor-
tant athtudinal differences that people might have about the depicted topic.

= |dentifying an Attitudinal Cleavage: examine whether visual labeling reflects a
stable societal gap (eg., age, gender, or political ideology divides) that cannot be
neutralized by labelling at scale.

= Creating a Dataset of Sentiment Labels that does not ignore such cleavages by
averaging across all the human coders' evaluations but rather assigns separate
sentiment labels for different societal groups.

= Training a Multi-task Multi-class Classifier: for prediction task we propose to
build a classification model that will incorporate such vector of labels for each
image, emphasizing the development of classifiers that more accurately capture
sentiments as interpreted by humans.

Empirical Case
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Image-Level Labels

= Political imagery that can evoke political divide - we choose visual representation of
events related to the topic of immigration.

m Aszsume poliical divide as a basis for the athtudinal cleavage

m 816 images acquired from Twitter accounts of U.S. media outlets and Getty Images
= |n two survey waves respondents were asked to evaluate sentiment of these images.

Proxy visual sentiment with four guestions (on a scale from 1 to 7):

1. Sentiment: Would vou say that this image portravs the subjectis) or objects(s) in this
picture in a positive or negative light?

2. Subject of harm: In your opinion, the subject(s) who is {are) portrayed in this picture
is (are) more likely to be dangerous or harmless?

3. Object of harm: In your opinion, the subject(s) who is (are) portrayed in this picture is
(are) more likely to be vulnerable or safe?

4. Accuracy: Do you think that this image is a faulty or accurate representation of the
story that actually occurred?

We average across individual evaluation scores for each visual sentiment proxy and pro-
duce 3 evaluation scores (AES € [1,7]) for each image: 1. averaged across all respon-
dents; 2. averaged across self-identified Democrats; 3. averaged across self-identified
Republicans.

We assign categorical labels to AES in the following way:

negative, IFAES < 3
neutral, 3 < IfAES < 5
positive, IFTAES > b

Categorical Label =

clgasparyan.com

» For 'Sentiment’ and 'Subjects of Harm' questions: notable differences in average
scores between Democrats and Republicans ...

B s0 here a single averaged label might introduce significant bias
» We need to use separate labels for Democrats (Lp) and Republicans (Lg).

Deep Learning Approach

» Our approach: Transfer learning of known convolutional neural networks (CHNMN) —
ResMet50W2, DenseMet121, and DenseMNetl49 — with adapted dual-task

multi-class classification in the last softmax layer.

' Fine-tuning with 80/20 train/validation sets split, Ir=0.0001, bs=32 with added
Batch Mormalization and Dropout layvers on 50 epochs with early stopping.

" Example of CMN architecture adapted for dual-task classification:
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Model Results on Validation Set:

» Sentiment:

» Dem: F1: 0.7 and Val Accuracy: 83%
B Rep: F1: 0.62 and Val Accuracy: &4%

» Subject of Harm:

m Dem: F1: 0.7 and Val Accuracy: 73%
m Rep: F1: 0.72 and Val Accuracy: 74%

Model Testing

“Sentiment” Dem: [Meutral], Rep: [Negative]
“Subject of Harm™ Dem: [Positive], Rep: [Meutral]
Conventional Labels:

"Sentiment”: [Meutral], "Subject of Harm": [Positive]

“Sentiment” Dem: [Meutral], Rep: [Megative]
“Subject of Harm"™ Dem: [Positive], Rep: [Meutral]

Conventional Labels:
"Sentiment”: [Mewtral], "Subject of Harm': [Meutral]
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Implications and Contributions

B Visual sentiment should be understood as an interplay between the image content
itzelf and individual athtudes towards such content.

= |[mportance of recognizing and addressing substantial and systematic influence of
coders’ social characteristics (such as political beliefs) on the labeling of visual
sentiment.

! Improving interpretabion of prediction results:
n 'For group X (2.4, Democrats/ Republicans), our model predicted a positive/negative visual sentiment label
for this image.
" Implications for politically polanzing content:
m researchers can use our model to determine whether an image's sentiment is influenced by
partizan differences;
n our trained classification model can forecast the sentiments that images elicit in different parbizan
EMOUps;
s that allows constructing an index measuring the polarizing impact of an image: |Lp — Ly, where
Ln and Ly - sentiment labels from Democrats and Republicans.
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