

Incidental Perceptions Shape Strategies for Responding to Violence:

Evidence from a Lab-in-the-Field Experiment in Kenya

Aidan Milliff

How do ordinary people make strategic decisions during violence?

Observational perseptions of gentle and uncer-tainty shape preferences proach/avoid for apand disruptive/mod- erate strategies of survival [7].

	Orientation to Threat Avoid Approach	Perceptions of yiolence affect propensity to
Disruptiveness	Flee Fight flee,	fight, adapt to a violent environment, danger.

Why would this be true?

Moderate

- Control appraisals associated with approach/avoid behavior in many settings outside violence [4, 2]
- "Unexpected" uncertainty is associated with larger behavior deviations in psych and neuroscience research [8, 6]

I manipulate perceptions about hypothetical violence in a lab-in-the-field experiment.

Changing perceptions changes strategy preferences.

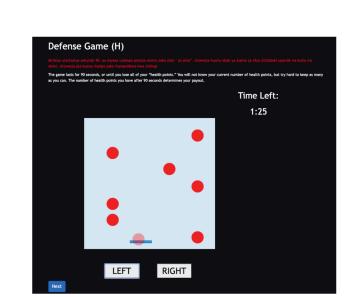
(Primary) Hypotheses

H1: Higher perceived control likelihood increases choosing "approach" strategies (i.e. fighting, adaptation).

H2: Higher perceived uncertainty increases likelihood of choosing "disruptive" strategies (i.e. fighting, fleeing).

Pre-registered at: https://osf.io/rehp3

Study Sample


- 1,506 participants from Katoloni locality, Machakos, Kenya
- 48/52 men-women split
- Median education: Secondary
- 70% involved in agriculture
- Most attend church
- > monthly
- 37% violence exposure (family)

Machakos County

Lab-in-the-Field Setup

- Implemented by Busara Center for Behavioral Economics, with investigators from U. Capetown, Columbia, U. Dar Es Salaam, Harvard, Makerere U., MIT, U. Nairobi, Uganda Christian U.
- "Omnibus" design: 10 modules mostly-random order
- Other modules study: personality traits, savings and investment decisions, gambling, climate resilience, trust in mobile money etc.
- H1 and H2 treatments separately randomized (2×2 between subjects), Qol is marginal component effect of each treatment
- ≤ 20 participants in 100 sessions do tasks on touchscreen tablets
- Lab sessions last up to 120 minutes, 329 Ksh. avg. incentive payout
- Perception treatment embedded in cash-incentivized game ____

Manipulating Perceptions of Violence


Control Manipulation

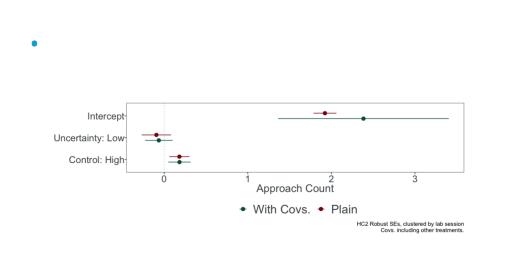
- Participants assigned to higher/lower game difficulty
- Randomizes ability to keep in-game "lives," worth real money (a loaf of bread)
- Successful manipulation:
 - 44.6 Ksh. inter-group difference in payout **p < . 001**)
 - 29pp difference in perceived control over outcome(p < .001)

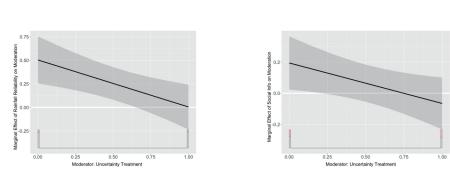
Uncertainty Manipulation(s)

- Participants see more/less information about game
- Successful manipulation for high difficulty group (p = .006), high variance in other group
- BUT other omnibus modules manipulate uncertainty about other concepts (like future reliability of livelihood, or riskiness of small gambles)

Treatmentassignment flow across survey modules. Each "level" is randomized separately.

Control and Uncertainty Affect Strategy Preferences


Control:: Approach


- High control perception increases preference for approach strategies by **7.5pp** in an pre-registered index of four decisions (95% power to detect)
- Big signal, considering treatment intensity

Uncertainty* :: **Disruptiveness**

*with combined treatments

- Effect of main uncertainty treatment is small, insignificant (3.8pp, p = .443)
- When uncertainty treatment is aligned with rainfall un-reliability, gambling uncertainty treatments, effects are surprisingly large (35.5pp, p = .005; 17.7pp, p = .032;min. 89% power to detect)

Interactions[3]:Rainfall Ambiguity,Social Uncertainty Ambiguity

Interference & Incidental **Treatments**

Substantive Finding

- Very incidental perceptions (even holdovers from other modules) may affect strategy preferences during hypothetical violence
- Difference driven by interpretation not information: Hypothetical violence description held constant across all treatment conditions

Experimental Methods Implications

- In studies with multiple treatments, previous, seemingly un-related treatments can spill-over. Important to:
 Know how they relate to jn your
 - study
 - Check that treatment statuses are not correlated
 - Consider controlling for them?
- Beware of especially exciting treatments [1]!

A study participant wins a soccer bet

Discussion

- "Shared" studies are increasingly common
- Many independently randomize, randomize order, ignore other modules
- This procedure shouldn't bias estimates, but you might mis-characterize the treatment
- It's also a missed opportunity for more precision [5]

References

[1] LauraBarasa.Hittingthejackpot:howtocurbyouthgambling.-,MIT

Gov/Lab, Cambridge, 2023.

[2] NicoH.Frijda.TheLawsofEmotion.PsychologyPress,Hove,Sep

[3] JensHainmueller, Jonathan Mummolo, and Yiqing Xu. Howmuch should we trust estimates from multiplicative interaction models? simple tools to improve empirical practice. Political Analysis, 27(2):163-192, 2019.

[4] JenniferS.LernerandDacherKeltner.Beyondvalence:Towarda model of emotion-specific influences on judgement and choice. Cognition and Emotion, 14(4):473-93, 2000.

[5] WinstonLin.Agnosticnotesonregressionadjustmentsto experimental data: Reexamining Freedman's critique. The Annals of Applied Statistics, 7(1):295 - 318, 2013.

[6] KatjaMehlhorn,BenNewell,PeterTodd,MichaelLee,KateMorgan, Victoria Braithwaite, Daniel Hausmann, Klaus Fiedler, and Cleotilde Gonzalez. Unpacking the exploration-exploitation tradeoff: A synthesis ofhuman and animal literatures. Decision, 2(3):191-215,

[7] AidanMilliff.Makingsenseandmakingchoices:Howcivilianschoose survival strategies during violence. Working paper, Stanford University, Stanford, CA, 2023.

[8] AngelaJ. Yuand Peter Dayan. Uncertainty, neuromodulation, and attention. Neuron, 46(4):681-692, 2005.

> Thanks to the Busara Center and MIT Gov/Lab for \$\$ and support!